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ABSTRACT

The results of research pertformed at Stanford Research Institute
for the Electronics Research Center of the National Aeronautics and Space
Administration on Contract NAS 12-59 are summarized in this final report,
which comprises Volumes 1 and 2. Analytical studies of performance feed-
back and analysis-synthesis adaptive systems are discussed. It is shown
that the theory of combined estimation and control (combined optimization
theory) constitutes the mathematical framework for adaptive control prob-
lems and that the adaptive systems described in the literature are approxi-
mate solutions of this general problem. The concept of measurement
adaptive systems, where information is treated as a state (or resource)
variable, 1s introduced; a general solution to this problem 1s derived

and readily computable special cases are given.

The steps of this research effort, as well as additional results
pertaining to reliability and space vehicle tracking applications, are
summarized by a series of seven technical memoranda generated in the
course of the study and reproduced in their original form in Volume 2
of the report. The problem of maximizing the expected service rendered
by a system comprising unreliable components is formulated as an optimal
control problem. The minimization of errors in tracking space vehicles
with large radio antennas is treated as a problem of combined estimation
and control to which the linearized Kalman-Bucy-Koepcke theory is applied.
A digital computer program simulating the operation ot the resulting

optimum tracking system was written and tested.
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I INTRODUCTION

The present final report summarizes the work performed by Stanford

Research

NAS 12-59, entitled “Rescarch on the Design of Adaptive Control Systems.

[nstitute for the Klectronics Research Center under Contract

1

A, Objectives of the Study

The initial objectives of the project, as spelled out in the Statement

of Work, are repeated here:

(1)

The objective of this research is to obtain quantitative
procedures for the design of control systems for space
vehicle applications which adapt to changes in the en-
vironment affecting the performance of the control
systems.

The contractor shall supply the necessary personnel,
facilities, services, and materials to accomplish the
work set forth below:

Item 1-—On the basis of the existing state-of-the-

art of adaptive control system design, study the
application of these methods to typical space vehicle
control systems. Consider passive, active, and com-
bined methods for achieving control-system performance
that is essentially invariant to changes in the sur-
rounding environment. Evaluate and compare these
methods from the point of view of obtaining quantita-
tive procedures useful to a control-system designer.

Item 2—Based on the results obtained under Item 1,
undertake to extend the method(s) which appear to
offer the most promise for application to future
space vehicle control-system designs. The desired
procedures should provide the simplest configuration
for the control system, keeping in mind that relia-
bility is a major goal in future designs, as well as
the best adaptive performance.

Item 3—Perform preliminary evaluation of the result-
ing methods and competitive designs, using computa-
tional aids, to determine their potential effect on
future space vehicle applications.



B. Summary of the Work Pertformed

The results obtained in the course of the study were documented in

52 ¥ , . .
three guarterly reports,™? and seven technical memoranda,* which can

be found 1n Vol. 2 of the ftinal report.

The principal subjects discussed in the three guarterly reports are

as follows:

In Quarterly Report 1,! the existing state-of-the-art of adaptive
control system design was evaluated, after completion of a systematic
review of the literature on the subject. A preliminary attempt to
classify the variety of designs into broad categories was made, and the
possibility of using the adaptive concept tor tracking and attitude con-

trol was discussed.

In Quarterly Report 2,° an analytical formulation of “Performance
Feedback’ adaptive systems was given. This class of systems was shown
to be describable by stochastic differential or difference equations,
the parameters of which determine the system’s performance, 1.e., 1mmu-
nity to performance measurement nolse, time response of the adaptive
loop, and coupling between the primary and the adaptive loop. Finally,
a linearization approach was suggested for determining the optimum coef-
ficients of the generally nonlinear differential or difference equations

governing the adaptive system.

In Quarterly Report 3,% the problem of generating an optimal linear
control for a plant consisting of two parts, one controllable and one
uncontrollable, was studied in detail. The calculation of the Riccati
equation becomes much simpler in this situation, which is characteristic
of many practical problems involving the tracking of space vehicles and

stars by means of antennas or lasers.

The resulting simplified computational procedures were used in the
optimum satellite tracking program, the implementation of which consti-
tuted a major project effort. This program, described in greater detail

in Ret. 10, comprises two parts, namely:

(1) An estimator which is derived by applying optimal linear esti-
mation theory and performing the appropriate linearizations.
The output of this first part is an estimate of the state of
the satellite and of the tracking system.

*
References are given at the end of the report.



(2) A controller which is obtained by making the necessary lincar-
izations and using optimal linear control theory. The control
law generated by this second part forces the angles of the
antenna to track the corresponding satellite angles.

This computer program, the major parts of which have been run suc-
cesstully on sample satellite trajectories tracked by a representative
85-foot parabolic radio antenna, is not at present sufficiently fast for
real-time work. [Its principal merit is that of an evaluation tool. With
a given set of antenna and measurement characteristics, it yields optimum
results in the above-defined sense and thus constitutes a yardstick for
Investigating alternative tracking configurations. In addition, it pro-
vides a tracking structure which capitalizes on the precise mathematical
laws governing the motion of the satellite to improve tracking perform-
ance. This same tracking structure had been originally suggested by one

of the authors,t

based on heuristic arguments, but the optimum approach
was determined in the course of this project. It is reasonable to expect
that as a result of fairly straightforward approximations, the program
can be speeded up for real-time applications where tracking accuracy has

a high premium.

C.  Summary of the Main Results

The main results obtuined in the course of the project are summa-

rized below.

An extensive review of the literature of adaptive systems was made,
and a preliminary categorization of the various adaptive concepts into
analysis-synthesis (AS), pertormance feedback (PF), model-referenced, and

low-sensitivity systems was obtained.!

In view of the disagreement among experts as to the precise defini-
tion of adaptive systems, certain classes of systems generally accepted
as being adaptive were singled out for detailed study; these systems are
characterized by their property of improved performance under conditions

of change and uncertainty.

The general mathematical framework for studying these classes of
adaptive systems is the theory of combined optimization, of which they
constitute special cases and approximations.’” The two main classes are

AS and PF systems.



A comprehensive analytical study of PF systems was carried out., A
mathematical model for describing the approach frejquently used to mcasure
the gradient of performance was tound, and a design procedure approxi-
mating the combined optimization solution by linearization was given in

Ret. 2 and 1s further discussed in the present report,

A similarly comprehensive analytical study of AS systems was carried

out, and a design procedure approximating the combined optimization solu-

tion by linearization was given.’ Low-sensitivity systems are included

as a subclass of AS systems. These systems are discussed in this report.

An apparently new class of adaptive systems, in which the measure-
ment subsvstem rather than the controller 1s adapted, has been studied
with some mathematical detail; this class of systems, termed measure-
ment adaptive systems, also constitutes a special case of combined opti-

mization. It is discussed in Sec. VI of the present report.

The motivation for designing adaptive systems in preference to more

conventional systems was investigated. This motivation was found to be

twotfold, namely

(1) Iwmproved performance in the presence of change and uncertainty

(2) Simplification of the measurement and/or controlier subsystem
and reduction of the need for accurate plant models.

As an important practical application, the performance enhancement
of systems with unreliable subsystems was investigated. The proposed
systems are designed in such a manner that the function of the healthy

subsystems 1s adapted to the mission requirements,

As another 1mportant application, the general problem of tracking
and attitude control was investigated,*>!® and a computer program for
optimizing the performance of a radio antenna tracking a satellite was
written. The major part of this program, which implements the linearized
equations of optimum estimation and control (an approximation to combined
optimization) has been debugged and should be valuable as an evaluation
tool for various NASA departments concerned with high-precision tracking
and attitude control. Although the present program is concerned with the
problem of accurately controlling large radio antennas, it can be modi-
fied to encompass various related fine pointing problems, notably those

found in earth-space laser communication systems.



A program for attacking the essential problems of adaptive system
research has been established and 1s discussed in Sec. VIII-B,

1

“Recommendations,’” in this report.

D. General Discussion on Adaptive Systems

A major difficulty encountered in the course of the project was to
define adaptation and to distinguish an adaptive system from an ordinary
feedback system. This situation is further complicated by the existence
of the so-called learning systems, described, for example, 1n Refs. |1l

and 12 and discussed 1n Sec. V.

After careful consideration of the various definitions proposed 1n

15 l6

the literature, notably by Cooper and Gibson,” Truxal,” Aseltine,” lee,

8 ¢ was decided that none of these definitions en-

Zadeh, and Kalman,
compassed all the concepts commonly referred to as adaptive nor provided
a clear distinction hetween adaptive and nonadaptive systems. It was
therefore decided that no useful contribution would result by stating
still another definition, and that it would be preferable to list the
terms of reference of the study by describing the various concepts com-

monly accepted as being adaptive.

. Principal Adaptive Concepts

The adaptive systems described in the control literature are often

categorized into two classes, namely

(1) Analysis-synthesis (AS) systems

(2) Performance feedback (PF) systems.

The AS system concept, discussed (among others) by Lee!® and

1% operates in the following manner: The state measurements

Bellman,
received by the sensing system are analyzed, with the aim of modeling
the imperfectly known parameters of the state transition equations, and
a control signal suitable for forcing the inferred (or “identified”)
process (plant) is thereafter synthesized. This is shown in the block

diagram of Fig. |.

The PF system concept, discussed (among others) by Cooper and

Gibson,® Aseltine,! Eveleigh,m Burroughs,21 Draper and 11,2 Osburn,?

2%

* and Dressler, 32

Donalson, operates in the following manner: The

actual performance of the system is measured, and a control designed to

5
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FIG. 1 TYPICAL ANALYSIS-SYNTHESIS (AS) SYSTEM

either maintain the actual performance equal to the reference pertor-
mance or to maximize the actual performance is generated by the adaptive
controller C,: the primary controller is C,. This is shown in the block

diagrams of Figs. 2(a) and 2(b).

Performance feedback systems vary widely, depending on what 1is

3 »

meant by “ performance. As representative examples of performance, the

following are quoted:

(1) Maintenance of constant transient response despite parameter
changes in the plant equations

(2) Minimum rms error between system input and system output in
the presence of changing signal and noise sources

{(3) Minimum expenditure of fuel in the presence of parameter
variations which upset the tuning of an engine.*

* This is the we ll-known

i ‘optimalizing® system applied by Draper and Li to an aircraft piston engine as
ear ly as 1949.2
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BY ALTERING A CONTROLLER PARAMETER
(b) PERFORMANCE FEEDBACK (PF) SYSTEM TO MAINTAIN
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TO THE PARAMETER 6 BY FORCING d=/d6 TO EQUAL ZERO



If maintenance of an invariant transient response is sought, the
. . . . R 29 M 95 .
resulting adaptive system is often termed “model -reference. "PhAINE I f
on the other hand, it is desired to maintain performance at a minimum or
. : . . . , «
maximum, the resultlng adaptlve system 1s often referred to as bottom-
seeking’” or “hill-climbing.” For their adjustment, these systems rely
on some measure of the gradient of performance with respect to the pa-

rameters & available for adaptive adjustment.

In addition to these two main classes of adaptive systems (AS and
PF), there is the apparently new class of measurement adaptive (MA) sys-
tems, discussed in detail in Sec. Il of this report. The distinguishing
feature is as follows: [In AS or PF systems, adaptation occurs with re-
spect to the plant inputs, whereas in MA systems, adaptation occurs with

respect to the sensing subsystem inputs.

2. Selection of Adaptive System Concepts

In view of the distinction made between AS and Pl adaptive systems,
the designer would like to have rules of thumb which would allow him to
decide at a very early stage of the design procedure which adaptive
approach is best suited for his practical problem. Depending on the
precise nature of the practical problem under discussion, either or both
of the two fundamental approaches toward adaptation can be used. This

fact will be clarified by means of the following three examples:

Example 1: It is desired to design a control system contalning a
linear plant with slowly varying parameters (e.g., coefficients of the
transition matrix) such that the transient responsc to input commands

remalns 1lnvarliant.

The PF approach would consist of implementing the desired transient
response under the form of a model and altering the free parameters
in the controller in accordance with some measure of the error between
the system’s output and the model’s output. This gain adjustment can
either take place directly, as discussed in Refs. 8 and 25, or one may
attempt to null the gradient of a convex function of error with respect

to the free controller parameters.®?%

The AS approach would consist of identifying the variable plant
parameter and of generating a control such that the poles of the closed-
loop system coincide with those of the model, which now does not need to

be physically implemented.



Example 2: It is desired to design a control system that maximizes

a variational pertformance criterion ot the form

K
J o= X lx,,u 1)
1=k
k= present discrete time
K = terminal time, (1)
given the plant
Xy = Qx g+ T, (2)

One or more of the elements&@u,’ﬂ

, are impertfectly known.

The simplest AS approach consists of identifying the imperfectly
known parameters Py 7y and of generating an optimal control based on
the best last estimate of these parameters. For variational problems of
the type discussed, the PF approach is usually not feasible, since the
actual performance J is not available until terminal time K. There are

two exceptions to this statement, namely:
(1) The variational problem is repetitive over the periods
(0,K), as would be the case for batch processes. Under

these circumstances, the gradient of J with respect to
the free controller parameters £ can be computed.

(2) The optimal trajectory x*(t) does not depend on the & ., y. ..
Under those circumstances, a model-referenced scheme %0r01ng
the actual output x(t) to track x*(t) can be implemented.

Example 3: The internal combustion engine discussed in Ref. 2 and
in Sec. IV is to be controlled in such a manner that the fuel consump-
tion rate 7 is minimum. This is achieved by finding the best ignition

angle ¢ in terms of the air density ©. No measurement of o is made.

In this example, the PF approach would appear to constitute the
only teasible scheme. However, one may take the point of view (actually
taken in Sec. IV) that the parameter perturbation mechanism which pro-
vides the gradient 97/3¢ identifies the unknown state 07/J¢ and there-
after forces the gradient to become zero by acting upon ¢. The opera-

tions of analysis and subsequent synthesis are quite apparent, and it



would seem to be difticult to draw a sharp distinction between the AS

and PF approaches in this particular example.

To summarize, the following conclusions are stated:

(1)

(3)

Depending on the practical situation under consideration,
either PF, AS, or both approaches can be used in principle.
The instrumentation required may well ditter, however. Ilor
instance, in the first example, the PF approach requires a
measurement of the error x*-x, whereas the AS approach does
not.

[t the criterion of performance is of a variational nature,
the AS approach constitutes, usually, the only feasible
approach,

It does not appear possible to state « priort which of the two
approaches provides the best performance when both are possible.
To compare pertormance, it is necessary to complete the design
and then compare performance. 1In later sections it will be
stated that the PF and AS approaches constitute approximations
of varying quality to the combined optimization problem.
Depending on the precise nature of the problem under consider-
ation and the adaptive structures postulated, one or the other
of these approaches may be better.

It one takes the point of view (actually taken in Sec. IV)

that the “performance’ or performance gradient feedback data in
the PF approach act as state variables rather than performance
indices, the sharp distinction between PF and AS approaches
disappears. In both cases, an unknown parameter or state 1is
identified, and an adequate control is generated 1in accordance
with the output of the identifier.

3. Purpose of Adaptive Systems

From the examples discussed in the previous section, it is clear

that one of the principal aims pursued by the designer of an adaptive

system 1s to increase the system’s performance in the presence of un-

certainty.

Uncertainty may enter into the equations in several different

ways, notably:

Uncertainty about the initial state x

Uncertainty about a constant parameter value, such as
b

3]

Uncertainty about a time-varying parameter value, such as

@, (t)

10



(4+) Uncertainty about the statistical characteristics of the ran-
dom effects which perturb the system. (These systems have
been studied by Bellman.!?)

{5) Uncertainty about a tinal state pursued by a hostile system.
(A discussion of this problem, which is related to the theory
of differential games, is given in Ref. 26.)

{6) Uncertainty about the performance criterion governing the
motion of a hostile system. This problem again 1s related to
the theory of differential games.

In addition to uncertainty, the following reasons have motivated

the development of adaptive systems:

(1) Simplification of the instrumentation subsystem
(2) Simplification of the controller subsystem

(3) Reduction of the need for accurate models of the process
(plant).

An example of a system to which these considerations apply 1s the
adaptive autopilot. Instead of building an exact model of aircratt dy-
namics as a tunction of such variables as speed, altitude, load, etc., of
measuring these variables and computing those control surface commands,
resulting in invariant aircraft transient response, one may adjust (by

trial and error) the autopilot gains to ensure this same result.

The adaptive approaches developed for real-time control can also be
used for the non-real-time function of optimum system design and planning.
The aim here is to reduce the amount of design time required to obtain an
optimum solution; instead, more or less automated trial and error proce-

dures lead to this same optimum design solution.

It is evident that similar trial and error procedures can be devised
to force a feasible computer solution toward an optimal solution by suc-
cessive 1terations. The adjustment mechanisms used to achieve this
result are sometimes called adaptive. The large number of gradient pro-
cedures developed for machine-computing the solution of variational prob-

lems are examples of this point of view.

11



In addition, much effort has been spent on the so-called adaptive
networks (Adaline,? Madaline,? Perceptron,m threshold logic units, and
others) for pattern recognition, signal recognition, and to some extent
for adaptive control. Since these efforts constitute a mechanization of
certain laws of adaptation, rather than new laws of adaptation, they

will not be discussed further in this report.

12



|1 COMBINED OPTIMIZATION AND ADAPTIVE CONTROL

Much of modern control theory consists of state-space techniques
tor solving control problems. It is the purpose of this chapter to show
how adaptive control problems may be formulated in state-space terms and

to investigate the implications of such a formulation.

A very general state-space formulation of control problems 1s the
combined optimization problem, which is discussed 1n the tirst section
ot this chapter. In the second section it is shown that by proper selec-
tion of the state of the plant to be controlled, the adaptive control
problem is a combined optimization problem; furthermore, 1t is possible
to view adaptive control techniques as methods of solving the combined

optimization problem approximately.

A. The Combined Optimization Problem

At the foundation of state-space theory is the concept of state.

By definition, the state of a system summarizes the history of past oper-
ation of the system as it affects future operation; that 1is, given the
state of a system and all future inputs, one can predict the future be -
havior of the system exactly. Because of this property, the key to the
control of a plant is gaining information about its state and using this
information to change the state in a desired manner. The combined opti-
mization problem (or stochastic control problem) is a formal statement

of performing these two tasks in an optimal manner. It has been treated
by Meier,?30 Sussman,? and Aoki,® for the discrete time continuous state
case; by Astrom® and Meier?®3 for the discrete time, discrete state case;

3

‘ - . . .
and by Wonham3 and Kushner?® for the continuous time, continuous state

case. The linear combined optimization problem has been studied by

Guncke ,¥ Joseph and Tou,” and Kalman.®

1. Statement of the Problem

Figure 3 is a block diagram of the combined optimization problem; 1n
Appendix A is a complete mathematical description of the problem and 1ts

solution. In order to specify the problem it is necessary to give: (1)

13
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FIG. 3 COMBINED OPTIMIZATION PROBLEM

a state equation relating the next state to the present state and i1nputs,
(2) a measurement equation relating the measurement to the state and
measurement noise, {(3) statistics of the disturbance input and measure-
ment noise, and (4) a performance index to measure the quality of opera-
tion of the system. The optimum controller is that algorithm which
selects the 1input on the basis of all available measurements in a manner

so as to optimize expected performance.

2. Solution of the Problem

Since 1t summarizes all information about the state of the svstem, the
conditional probability density of the state of the system is called the
intformation state. The optimum controller can be divided into two parts:
the estimator, which computes the information state, and the control law,
which gives the optimum input as a function of the information state.

Equations for estimation and control are given in Appendix A.

14



In general, the information state is infinite dimenstional; however,
if the disturbance inputs and measurement noises are Gaussian and the
state and measurement equations linear, then the information state 1s
just the conditional mean and conditional covariance of the state, given
all available measurements. The conditional covariance is independent
of the measurements and may be computed a priori by solution of a Riccati
equation. The conditional mean can be computed by use of a linear system,
whose gains are dependent on the conditional covariance and which 1s com-
monly referred to as the Kalman filter. The Kalman filter is considered
in greater detail in Sec. III and Appendix A. If, in addition, the per-
formance index is quadratic, the control law is linear and can be found
using the same techniques used in finding the Kalman filter (i.e., by

solving a Riccati equation).

B. Adaptive Control As Combined Optimization

Consider Fig. 3 again, but now suppose that the state equation, mea-
surement equation, or noise statistics are not completely known. Suppose
further that this uncertainty about the system may be represented in
terms of a set of unknown parameters whose dynamic and statistical prop-
erties are given by a set of difference equations similar to the state
equations. If the state is augmented to include these parameters, then a
new and completely known plant and measurement system may be defined;
thus, the adaptive control problem is seen to be a combined optimization
problem. An example of this augmentation is given in Sec. Il and in de-
tail in Appendix B. Even if the uncertainty cannot be parameterized by a
finite number of parameters, the augmentation described above may be car-
ried out {in principle), because from a functional analysis point of view,
a function is an infinite dimensional vector. Unfortunately, in this case

the resulting plant will be infinite dimensional.

Solution of the appropriate combined optimization problem will give
the optimum controller in an adaptive control situation; however, in most
adaptive control situations, the information state is infinite dimensional
because of the inherent nonlinearity of adaptive control problems. (An
exception to this statement, where the information state is finite dimen-
sional, is presented in Sec. III.) Adaptive control techniques may be
viewed as methods of solving this infinite dimensional problem approxi-
mately. Some of the techniques, such as the analysis-synthesis and

passive techniques presented in the next section, are based directly on

19



combined optimization theory. Others, such as the performance feedback
methods presented in Sec. 1V, are based on more heuristic considerations.
The heuristic methods have the advantage of requiring, in general, less
knowledge about the behavior of the uncertainties in the system; on the
other hand, there 1s no a priori guarantee that their use will result an

a system anywhere near optimal.

C. Summary

The combined optimization problem is the problem of controlling a
plant on the basis of incomplete knowledge of 1ts state. By converting
unknown parameters {or functions) into state variables, adaptive control
problems are seen to be combined optimization problems. Adaptive con-
trol techniques may be viewed as methods for solving the combined optimi-

zation problem either directly or heuristically.

16



11 ANALYSIS-SYNTHESIS AND PASSIVE ADAPTIVE SYSTEMS

In this section the problems of controlling a linear system with
incompletely known parameters 1s considered. Two adaptive approaches
will be presented: design of a conventional linear controller to min-
Imize sensitivity to parameter uncertainty, and design of a system which
identifies the unknown parameters and modifies 1ts control law on the

basis of this identification, taking into account dual control®

aspects.
The approach taken in this development 1s based directly upon combined
optimization theory. Estimation, which includes identification, 1s per-
formed by an extension of the Kalman filter (which, as will be seen, 1s
optimal 1n special cases), and the control law is found by application

of linear control theorv.

¥ and Schmidt! were the first workers to apply linear estima-

Battin
tion theory to nonlinear estimation by linearization of the system
equations about the present estimate. They considered application to

2 and Kopp and Orford® considered the use of

satellite tracking. Farison
such linearized estimators in the identification or analysis hall of
analysis/synthesis systems. The present work is based upon some of the
ideas developed by lee in Chapter 4 of his research monograph.® Such
technigues have also been successfully applied by SRl to (enemy) missile
tracking problems, including tdentification of unknown ballistic coef-

#  The use of the linear control theory to derive a passive-

ficients.
adaptive control law and to obtain an analysis-synthesis control law

which takes 1nto account dual-control aspects appears to be a new result.

A. lainear Adaptive Control Problem

Consider Fig. 4 with the plant linear and the disturbance d, and the
noise v, white Gaussian. [If the performance index is quadratic and if
the system parameters are known exactly, then the optimum controller is
linear and may be found by application of well-known procedures (see
Appendix A). However, in many situations the parameters are not known

exactly and change in a random manner due to environmental effects. In
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FIG. 4 LINEAR ADAPTIVE CONTROL PROBLEM

other situations the plant may actually be nonlinear; thus the linear-
ization parameters change as the operating point shifts. 1t would be
desirable to find optimum or near-optimum controllers for these situa-
tions. This problem, in essence, is the linear adaptive control

problem.

The linear adaptive control problem is stated in complete mathe-
matical form in Appendix B. Note that the plant has a scalar input u
and a scalar output y,; the multi-input, multi-output situation can be

handled by a straightforward extension.

It is assumed that the effect of the disturbances d, on the output
is known and only uncertainty about the effect of the control input u,
on the output y, is present. A suitable state* for describing the

dynamic behavior of the plant, which 1s taken to have order n, consists

This state is of dimension 3n - 2, which is larger than the minimum dimension n necessary to describe an
nth-order system. However, since all of these quantities are needed for identification, 1t 1s convenient
to use them as state variables,
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of the present and past n - | outputs Yoo the past n - | ainputs u, and

the past n - | disturbance 1nputs d,. The vector of these 3n - 2 state
variables is referred to as the dynamic state x?. It this vector is aug-

mented by the vector ¢, that governs the behavior of the unknown param-
cters, the result is the complete state vector x,; with this state vector
the linear adaptive control problem becomes a combined optimization

problen.

BB, The Extended Kalman Filter

Now consider the estimation problem for the nonlinear plant and
measurement system given 1in Fig. 4. 1 f(+) and h(-) were linear, then
the estimator shown in Fig. 4 would be optimal for the proper K, (given
in Appendix A). In this case, as was previously mentioned, the optimum
estimate is the conditional mean. If, however, either h(*) or f(*) or
both are nonlinear, then the conditional mean is not a valid information
state 1n general; nevertheless, an approximation to the conditional mean
obtained by extending linear filter theory will be used as an approxi-

mation to the information state.

At this point a word on notation is in order. The circumflex on a
variable 1s used to indicate that it is the estimate of that variable;
the subscript k/j means at time k, given all information up to and in-
cluding time j. lHence, ka_lis the estimate of the state x at time k,

given 1nformation through time k - 1.

The essence of the extended Kalman filter is presented in Fig. 5. The
tilter operates basically as follows: From the present estimate, the
nonlinear state and measurement equations are used to predict the next
measurement under the assumption of zero noise and disturbance. This
prediction is compared with the actual measurement and the estimate
corrected by a linear function of their difference. linear estimation
theory and appropriate linearization are used to determine this linear
function. Viewed in this light, the extended Kalman Filter is an

eminently reasonable method of estimation.

C. Identification with the Extended Kalman Filter

Application of the approximate estimator presented in Sec. B to the

Finear adaptive control problem stated in Sec. A is considered here.
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FIG.5 EXTENDED KALMAN FILTER
1. Basic Identification Scheme

When the linear adaptive control problem is converted to a combined
optimization problem, the state is augmented to 1include the unknown
parameters. Hence, in estimating the state vector, the extended Ka lman
filter will identify the unknown parameters. To make this identification
clear, the state vector can be partitioned into the dynamic state and the
parameter state; other quantities are partitioned in a similar manner.
The result is a set of equations, given in Appendix B and illustrated in
Fig. 6, that show specifically how the dynamic state is estimated and the

parameters identified and the relation between these two processes.

Figure 6 is a diagram of an adaptive control system using the
extended Kalman filter. Note that the present estimate of the parameter
state is used to update the plant model and to vary the control law.

Derivation of the control law is treated in the next sections. The gains
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FiG. 6 ADAPTIVE CONTROL SYSTEM
K, and K¢ are determined by solution of the variance equations. Equa-

tion (A-15) of Appendix A implies that the effect of the parameter

uncertainty on estimation of the dynamic state x” 1s equivalent to a

k+ ]
random disturbance with covariance QF.

2. Justification of the Identification Scheme

In Appendix A the problem of theoretically justifying the identifi-
cation scheme just presented is considered in detail. One simple
approach to justification is to look for situations in which the scheme
can be shown to be optimal; then for situations close to these, the

scheme should be close to optimal. One such situation 1s, of course,
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the case wherein there is no parameter uncertainty; hence, it can be
expected that the scheme will work well for cases 1in which the param-
eter uncertainty is small. The practical applications in this situation

are the passive adaptive systems considered 1n the next section.

A second case in which the extended Kalman filter is optimal 1s
when the initial plant state 1s known and no measurement noise is present.
In this case, as is shown in Appendix B, no multiplication of random
variables occurs; and since the situation 1s linear, linear theory ap-
plies. The natural results of using the extended Kalman filter 1n the
low-measurement noise case are the analysis-synthesis adaptive systems

presented 1n E.

D. Passive Adaptive Control Systems

When the amount of uncertainty about the plunt parameters 1s small
it 1s reasonable to set K¢ in Fig. 6 equal to zero, that is, to not
identify the unknown parameters. Because of the presence of uncertainty,
the control law must be modified from the control law that 1is optimuam
for no uncertainty in order to minimize the sensitivity to parameter
variatlions.

As mentioned in the previous section, the effect of uncertainty 1s

/

a pseudo disturbance with covariance Q%.

A A T
»® )
on (3)

Q * - FkD(D Ffl)

k

The covariance ﬁa of the parameter state ¢ can be determined
a priort because no i1dentification takes place. Tbe transition matrix
E?Q is linear in the dynamic state xf; therefore, Oz 1s gquadratic 1in
xf ,and it is not too surprising that the effect of the parameter un-
certainty is to add additional quadratic cost terms to the performance
index. The optimal control law can thus be found by linear methods;

details of thederivation are given 1n Appendix B.

Such a system can be called a passive adaptive system—adaptive because
the control law i1s modified to reduce sensitivity to plant uncertainty,

and passive because no active methods are used to reduce this uncertainty.
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F.. Analysis-Synthesis Adaptive Systems

It K, in Fig. 6 1s not equal to zero, then the uncertain plant
B

parameters are identified. In this case, determination of the control

Jaw is complicated considerably for two reasons: (1) F/will now change
. . . . . - pb

as a [unction of the measurements received, and (2) the covariance /ﬁ

of the parameter state will be affected by the control law and cannot be
determined a priori. The fact that [f)dppends upon the control law
means that the problem involves the dual-control tradeoff between using
the itnpnt tor control purposes and using i1t for informational purposes.
Furthermore, i1t implies that the optimal control law 1s a function of
#DA

Clee ., Pf 1s part of the i1nformation state.

The simplest approach to control is to ignore the dual-control aspects
by forgetting about the effect of contrel on Q:. Two philosophies of con-
trol in this case are: (1) to use the control which would be optimal 1f
the present estimate of the parameter state b were exact {this 1s Farison’s
approach®); (2) to determine the optimal closed-loop system for the nominal
parameters and pick a control which maintains this closed loop for the 1i1den-
titied parameters (t.e., model reference synthesis, which s Kopp and
Ortord’s approach43).P§rf0rmanCe for these systems can be estimated by con-
verting the eflect of Q: into additional cost terms, as described in Appen-

dix B, and using the suboptimal linear control theory of Ret. 29.

The true optimum control can be found by application of dynamic
programming, but the dimension of the information state 1n all but the
simplest cases makes this impractical. One possible approximation
whtch takes i1nto account the dual-control aspects 1s to assume that P?
is a function of the control law, but that it does not depend very
strongly upon the actual measurements. Then for a given control law,
approximate determination of P? may be made a priort. With b?, Q; can
be determined and the passive adaptive theory described 1n Sec. D and
Appendix B used to derive an improved control law. This process can be

used iteratively until it converges, using the passive adaptive control

law initially.

The primary effect of %he analysis-synthesis systems just described
1s to reduce P?, and hence é:, below what they would be for the passive
adaptive methods. This reduction in turn reduces the additional cost
terms, due to uncertainty, below that which is 1ncurred 1n using passive
adaption. The cost of this improved performance is naturally increased

complexity.
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F. Conclusions

The development presented in this section was based on three

assumptions:

(1) The problem would be a linear problem i1 the parameters
were known (i.e., linear equations, Gaussian random
processes, quadratic costs, no constraints).

{(2) The disturbance statistics are known,

(3) The measurement noise 1s small,

The first of these assumptions 1s most important to the development,
since nonlinear problems are very hard to handle in general, even with-

out the difficulties introduced by parameter uncertainty. Fortunately,

many important problems satisfy this linearization assumption. Non-
quadratic cost and/or constraints on the control will not affect the

estimation procedures but will complicate the control.
With these assumptions, the following results may be obtained:

{1) The adaptive control problem is a combined optimization
problem, in general nonlinear. Adaptive control can be
viewed as an approximation to solving this combined
optimization problem, whose solution 1s generally imcom-
putable. (This conclusion does not depend upon the
above assumptions.)

(2) The simplest approximation consists of designing the
system to have low sensitivity to the parameter vari-
ations. Estimation 1n this case 1s the Kalman filter,
which consists of the a priori model of the plant, with
the state being updated by a linear function of the dif-
ference between the predicted and actual measurements.

(3) It the low-sensitivity design has 1nadequate performance,
then a better approximation to combined optimization 1s
an analysis-synthesis system 1n which the plant parameters
are i1dentified on the basis of the available measurements.
The extended Kalman filter is a good approximate technique
of estimating the dynamic state of the system and identi- -
fying its parameters; in fact, 1t 1s the optimal estimator
and i1dentifier when the measurement noise is zero and the
initial state of the system is known. The filter consists
of a model of the plant based on the present estimate of
parameters and a model of the parameter behavior, both of
which are updated by linear functions of the difference
between predicted and actual measurements.
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(4) For either the low-sensitivity or the analysis-synthesis
system, the major effect of parameter uncertainty is
equivalent to an additional term in the loss function.

A linear control law, which is optimal in the low-
sensitivity case and very close to optimal in the
analysis-synthesis case, may be found by solution of a
linear control problem without parameter uncertainty
but with the modified performance index. The primary
effect of 1dentification is to reduce the size of the
added cost terms.

(5) Realization of the control law in the analysis-synthesis
situation may be simplitied by use of a model retference
in synthesis at a cost in performance.

From the discussion of this chapter it can be seen that the control
part of the linear adaptive control problem is more complicated than the
estimation part, because of dual-control aspects. Even in the no-
measurement noise case, where the extended Kalman filter is exact, the
exact optimal control cannot be determined by linear methods. Approxi-
mate techniques using linear control theory are described in the section
on analysis-synthesis; there is a definite need for comparing these
methods, the passive adaptive control, and the actual optimal control
determined by dynamic programming. Another area where computer simula-
tion would prove of benetit is in application of the techniques of this

chapter to the nonzero measurement noise case.

In conclusion, a standard and systematic procedure, hased on optimal
linear system theory, has been developed for the design of low-sensitivity
and analysis-synthesis adaptive control systems. The resulting systems
are close to optimum in important situations, and their performance can be
analyzed in these situations. In particular, it is possible to calculate

the gain in performance resulting trom parameter identification.
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IV ANALYTICAL APPROACHES FOR PERFORMANCE FEEDBACK
ADAPTIVE SYSTEMS

In this section analytical approaches toward the analysis of per-

formance feedback (PF) systems are presented.

to the following conclusions:

(1

(1)

It is possible to describe a PI system by a stochastic
nonlinear vector differential or difference equation.
As a result, the well-known and very effective time-
domain techniques (state-space techniques) can be used
to analyze stability and performance; and these same
techniques can be applied, in principle, to optimize
the design parameters of a PI' system and to investi-
gate sensltivity properties.

With this description by a stochastic nonlinear vector
equation, 1t 1s possible to understand the coupling
between system variables and environmental 1nputs, and
to specify performance criteria that are not contra-
dictory or mutually exclusive.

In any discussion on PF systems, 1t 1s essential to de-
fine precisely what is meant by performance. Usually,
three terms need to be considered:

(a) The instantaneous cost of the primary loop
{(b) The instantaneous cost of the adaptive loop

(c) The performance J of the overall system, which
1s usually expressed as a variational function
of the two instantaneous costs.

The instantaneous cost of the adaptive loop {or the
gradient thereof) may enter into the differential or
difference equations of the system as a state variable.

Both parameter perturbation and model-referenced
adaptive systems can be analyzed and synthesized in a
similar manner. Their common characteristic, which
often distinguishes them from analysis-synthesis
systems, 1s that the performance J is measured directly
and used to adapt the system. Both classes of systems
will therefore be included in the term performance-

feedback.
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A Example of a PF Systen

To illustrate the relations between variables that must be consid-
cered in the establishment of a realistic mathematical model, the example
of an internal combustion engine driving a load (inertia and dissipation)
at controlled speed is considered. The rate of fuel consumption to

be minimized depends on the air density ;. the carburetor opening (throttle

setting) u. and the speed 1. Speed control is accomplished by action of

the primary controller upon u, and indirectly, on the ignition angle

Minimum fuel consumption is obtained by action of the adaptive controller

upon The actual rate of fuel consumption or its gradient o -

of which 1s this has

(S

is measured by a sensor, the output or i, sensor

internal dynamics und is affected by noise v The actual speed "0 1s
/
also measured by a sensor, which yields the measurement ‘L corrupted by
noise ¢t
This example was inspired by Draper and I.i’s* pioneering discussion
of the adaptive control of an aircraft engine of the internal combustion
type. The resulting system can be represented by the block diagram.

Fig. 7. The two loops, the primary (speed control) loop and the secondary

(adaptive or fuel consumption control) loop, are shown.
l v(l)
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FIG.7 BLOCK DIAGRAM OF EXAMPLE PF SYSTEM
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The design of the adaptive controller 1n Fig. 7 can proceed 1n two

different ways:

(1) Postulate a controller and try to optimize the settings
of the free parameters in this structure.

(2) Based on all past information supplied to the con-
troller, notably past measurements of i/ and =, design a
controller that generates the optimal controls (u and ),
minimiziung the system performance J.

Note that the designer of conventional (nonadaptive) systems has
exactly the same two alternatives. The first is discussed at great
length in standard texts of control system synthesis, and the second

is based upon the theory ol optimal control.

1. Analysis for Controller with Fixed Structure

[n what follows. an analysis of the first design alternative will
be given. lor ease of exposition as well as practical reasons relating
to the measurement of Vu = d7/0f, a discrete (difference-equation) model

of the resulting system will be established as follows:

Plant Equations
Qpey = O, + T, , (4)

where T,, the torque applied from time k to time k + 1, 1s given by

and the fuel consumption rate is
7! = n(uk,Q

e ) . (6)

Postulated Control-Loop Equation

M

i

Upyoy = u, ¥ gy - ) , (7)

where g{(+) is a suitable function to be chosen, with g(0) = 0.
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Gradient Equation

The gradient may be computed (approximately) as

although, it should be noted that this is only one possible embodiment

for computing Vi,

Postulated Adaptive Loop Equation
i, K20 . (9)

The adaption equation (9) corresponds to an implementation of a

steepest descent search; i.e., the next change in the ignition angle

vy ~ 7, 1s related to the measurement of the gradient at time k.

Suppose that the measurements of (I and V7 are given as

.
9 - 0 O
Sy i + Lk (106)
7 (2)
/7 = VY .
/7, Vi, o+ v, ; (10b)
i.e. the noise v''’ and v'?) are additive. (This assumption is not

necessary but was made for the purposes of the ensuing discussion.)
Internal dynamics in the measurement system can be included in a straight-
forward fashion by adding extra states. In order to express Egqs. (1)
through (10) in state-space notation, the following definitions will now

be made:

Q, = b
u, = x:2)
ﬁk = x£3)
G- = xiA)
ooy = ox) (11)
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This set of equations, which we summarize by the vector difference
equation
B P e (1) (20
X+ J g pig vy 0l ]
entirely describes the adaptive system under consideration. A simi

set of state equations can be obtained for any PF adaptive system.

(12)

(13)

(14)

(17)

lar

The difference equation (17) describes a dynamic system (the state

of which contains such familiar components as speed !

and such

components as fuel consumption rate 7) forced by the environment ..

reference input to the primary loop \!*,

¢+ Its singular point (or equilibrium state) for constant .

) o )
p U e 020 = 0 s

L o O
20 = g
)'(3) - x(4)
x5 = m*

unfamiliar

the
. (1)
and the measurement noise v  and
and %, with

where u* and @* are the optimal controls and 7* is the minimum fuel-

consumption rate for the given o and (0%,

The stability properties of

this singular point depend on the postulated control laws—as given by

g(+) of Eq. (7) and K of Eq. (9).
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fn view of the coupling in ¥qgs. (12) through (16}, 1t follows that
L . ‘ : . 9
any variation of the forcing terms , . U}, rL]). and vi“’ sets up a

transient of the complete state vector x In particular, the measure-

P
ment noise ril' introduced by the adaptive loop couples into the primary
loop and affects the speed regulation. Similarly. any change in i}

couples into the adaptive loop and temporarily forces 7 to differ from 7"

Since the system under consideration must satisfy two functions,
speed control and fuel optimization, the designer would like to optimize

the control algorithms of Eqs. (7) and (9) with respect to both functions;

i.e.. he would like to determine g(+) and K such that the loss functions
N+ - 0 = (o . (1))
ll(xhk K_k) l] L'k x, ] (18)
and
ok gy = L. (59
LCrr = m,) Lylrp = xy3) ] (19)
are minimized, on the average. In view of the above-discussed coupling

effects, two separate optimizations of the forms of Egs. (18) and (19)

are not generally possible, and a combined loss function of the form

(1) _(5) O *
l[xh ,xh+1,f2k,fk} (20)

must be imposed. In general, it is desired to minimize the expected
value of this loss function; t.e., a performance criterion of the familiar
variational form

J = E ol 23] Ay (21)

nY o) 1)k
P s, U

is obtained.

Since the léws of control [Egs. (7) and (9)] are postulated, i.e.,
parameterized in terms of g{+) and K, it is possible, in principle, to
compute the performance J explicitly in terms of these parameters for a
given initial state x, and the given probability density functions p(g),
pQ*), plv’] and plv'?’]. 1In the simplest case, g(*) = Gx(-), where
G is a constant gain. The performance then becomes a function J(G,K, x,)

of the gains G and K and of the initial state x;. Under these circum-

stances, a necessary condition for optimality 1s that

)

J aJ
— = 0 , — = 0 . (22)
oG oK
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In more realistic cases, the function J(G,K‘XU) cannot be calculated
explicitly in terms of ¢ and K, but must be obtained empirically by
means of simulations. This changes in no way the principle of the
method, since the fundamental step in the optimization consists of

setting

aJ oJ
: and — equal to zero
G 3K

2. Analysis for an Optimum Controller

Whereas previously the form of the controller was fixed and the
design optimization reduced to the selection of optimum parameter values,
the approach taken in the present section consists of seeking the optimal
controls {u and ) based on the noisy state information received. The

problem is formulated in the following manner.
Given:

Plant Equations

Qk+] = Qk + ¢(uk’nk'ﬁk'pk) (23a)
m, = ﬁ(uk,Qk,pk) . (23b)

LA MEATER (24a)
4 .
2, = R Q0P (24b)

Find:

The admissible controls u, and 7, which minimize the performance

J = E Z 1, 7)1 (25)
o O L1y (2 R
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As stated, the problem is clearly one of combined optimization. In
the general case, the optimization implied by ¥q. (25) cannot be carried
oul conveniently. However, the important result is that a typical per-
formance feedback system can be formulated as a combined optimization
problem once it has been clearly understood that what is commonly called
performance (7), can be treated as a state variable and that a performance

criterion of the form of Eq. (235) must be 1mposed.

In this example, the optimum C?ntrgls u, and 7, are functions of the

ok
: 7, and 0, Q

)
7 Li

A i

77 " R

k k=1 " 0 k=1’ ! 0
tively The optimum controller consists of a part that estimates the

past history of m and (!, respec-
state of the system and a part that generates the pair (u, ), which
strikes the proper balance between errors in the speed (primary) and per-

formance (adaptive) loops.

It 1s doubtful that the designer of a performance feedback system of
the type discussed would want to go to the trouble of solving the stated
problem of combined optimization, since these systems are, as a rule, of
moderate scope and an approach as 1nvolved as combined optimization would

not appear to be justified.

Although this discussion has been centered around the historical
example of Draper and Li’s engine control system, it is clear that other
performance feedback systems described in the literature can be analyzed

in a similar fashion and either of the two design approaches can be used.

One difference between the system of Draper and Li and other proposed
performance feedback systems should be pointed out. This difference 1is
illustrated in Fig. 8, where it is seen that in the Draper and Li example,
the variable 7 which 1s fed back is an actual physical variable; whereas
in the other example, 7 is a computed quantity. If the second example is
considered as a combined optimization problem, it will be found that the
computed 7 1is superfluous, since it contains no information not already
contained in the measurement y. This is not the case in the Draper and Li
example, as was seen in the above. One topic of further investigation is
the possibility of obtaining nonheuristic approximation solutions to the

combined optimization problem which make use of the computed 7.
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B. Model-Referenced Adaptive Systems

An inherent disadvantage of parameter perturbation schemes 1is the
necessity of continually perturbing the system in order to compute the
gradient of performance. This is essential to the adaption algorithms
that are generally employed. This continual perturbation will degrade
system performance to some extent. Another technique employing the
philosophy of performance feedback 1s that of model-referenced adaptive
systems. In the model-referenced approach 1t is not necessary to perturb

the operating system and, as a result, cause a deterioration in performance.

1. Problem Formulation

Model-referenced adaptive systems have the basic form illustrated in

Fig. 9. A reference model, which yields the desired input-output

REFERENCE Z2

— MODEL

PERFORMANCE
EVALUATION -

e
' :> Il AND
/ ADAPTION +
/ MECHANISM

/ w
/ l
ADAPKVE u z,

>
~ cONTHOLLER ———  PLANT
| /

/

TA-35978 -24

FIG.9 MODEL-REFERENCED ADAPTIVE SYSTEM
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relationships of the system, operates in parallel with the adaptive control
system (plant plus adaptive controller) and is subjected to the same input
r. In essence, the reference model can be considered as an i1mplicit char-
acterization of the performance criterion. Since the reference-model out-
put z, corresponds to the desired output for the system, the design objec-
tive is to adjust the adaptive parameters (these are the parameters of the
adaptive controller) so that the adaptive control system output z, equals
the desired output z, despite variations in the plant and/or environment.
The adaption proceeds according to a functional of the difference between

and z,.

<
The following discussion considers systems described by linear dif-

ferential equations 1n which the state x can be measured exactly.

Plant Equations

P Foltdx + D (thu + Gl(t)r + C 0w (26)
z, = fll(t)x , (27)
where
x = n-dimensional state vector
u = g-dimensional control vector
r = gq'-dimensional input vector
w = s-dimensional nolse vector
2, = Jj-dimensional output vector
Fl = n “ n feedback matrix
D, = n # q distribution matrix
G, = n~ g' distribution matrix
C, = n* s distribution matrix
H, = J “ n output matrix.

& = F2y + Gzr (28)
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where

y = n-dimensional state vector
z, = j-dimensional output vector
F, = mxn feedback matrix

G, = nmX g' distribution matrix
H, = jXm output matrix.

Control Equation

u o= Alw)x + T'(a)r ) (30)
where
Ala) = g %X n control matrix
T(w) = g x g' control matrix
@ = k-dimensional vector of adaptive parameters.

The control law of Eq. (30) corresponds to a fixed structure (t.e., & and

') whose parameters (@) are to be chosen to minimize a functional

tf
J - J Le)dt (31)
to
where
e T 1z, " z,
ty = initial time
tf = final time,

It should be noted that the matrices of the plant (Eqs. 26 and 27)
are functions of time, since they contain time-varying physical parameters,
while the matrices of the reference model are constant. The model cor-

responds to some desired invariant performance.

2. Solution for the Adaptive Controller

Basic to all performance feedback adaptive systems is the assumption
that there exists a well-behaved functional relationship between J of
Eq. (26) and the parameters of the adaptive controller (these are the
adaptive parameters). This may be expressed as J(a;, ..., @, ), where the
@, are the adaptive parameters, and J can be considered a hypersurface

above the k-dimensional hyperplane of adaptive parameters. The design
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objective of a model-referenced adaptive system is to find, and operate

at, that set of admissible adaptive parameter values for which J 1s mini-
wized. Hence, the adaption gencrally corresponds to a surface search. It
should be pointed out that the adaption technique described in Memorandum 58

is not a surface search in the strictest sense.

Several adaption techniques have been developed for use with model-

referenced systems. These will be discussed below.
(1) The techuique described by Osburn®3 and by Donalson?*, is based

on the method of steepest descent; 1.e

L

a = -KVJ ) K>0 ) (32)
where the gradient VJ consists of the partial derivatives
dJ/EQifor i =1, ..., k. To generate these partial de-
rivatives, a separate mechanization of the reference mode |

is required for each adaptive parameter in the system.

(2) The complexity associated with the implementation of
the adaption procedure, as described in Refs. 23 and
24, is a distinct drawback because of practical con-
siderations. An adaption technique that is extremely
simple to implement has been derived in Refs. 8 and 25.
In this approach the explicit functional dependence of
the error e = z; - z, on the adaptive parameters 1s
established by solving Egs. (26) and (28). By various
manipulations it is then shown that the adaption equa-
tions are of the form

g = Ole,y,r) . (33)

Furthermore, it is demonstrated that these adaption
equations are very simple to implement, which 1s a
definite advantage in practical applications.

C. Discussion

An important advantage of performance feedback adaptive systems 1is
that they require very little a priori information about the plant and/or
environment for successful operation of the system. Only knowledge that
there exist several adjustable system parameters, and reasonable assurance
that the system performance criterion is a well-behaved functional of
these adaptive parameters, is required. To be sure. a priori information

regarding the nature of the plant may be taken advantage of 1in the
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selection of the adaption technique employed and 1n the initial values

chosen for the adaptive parameters.

Although the gradient of performance must be measured in the per-
formance feedback approach, this approach has the advantage of avoiding
the complex identification problem, which is necessary with other tech-
niques to obtain an approximate model of the plant and/or environment.
This shortcoming is inherent in the analysis-synthesis approach (see
Sec. 111), where the system performance is highly dependent upon the

accuracy with which the plant and/or environment are identified (or

modeled).

The performance feedback approach is “closed-loop”

with respect to
system performance, since the adaption is based on the performance cri-
terion. This contrasts with the analysis-synthesis approach, which 1s

“open-loop’ with respect to system performance; i.e., the controller 1is

found with respect to an approximate model of the plant and/or environment.

The systems which measure the gradient of performance by direct per-
turbation of the adaptive parameters have the common problem that these
perturbations may introduce objectionable effects into the output of the
system. Whether or not the perturbations cause objectionable output dis-
turbances, they do give rise to an undesirable effect that has been termed
tracking loss or misadjustment. This is the loss in performance that re-
sults from the adaptive parameters being perturbed away from their optimum
values. (Recall that this continued perturbation is required to permit
the optimum point to be tracked as the plant and/or environment vary.)
Consequently, the system is not always operating at the optimum adaptive
parameter settings, and therefore the system performance actually achieved
is always somewhat less than the optimum. As noted previously, certain
model-referenced adaptive systems do not require these perturbation

signals.

A serious shortcoming of the surface searching procedures, which em-
ploy the performance gradient, is that they will find only a local minimum,
depending on the initial point from which the search proceeds. That 1s,
the adaption essentially terminates when the performance gradient is zero.
This property is of no consequence if the performance criterion 1s known
to have only one minimum. However, when the possibility of multiple minima
exists, there 1s no assurance that the system will find the global minimum.

The only method suggested to overcome this problem utilizes the features of
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a random search. The simplified adaption technique derived in Memorandum 5°8
is not a surface search based on the various partial derivatives of the
performance criterion. Hence, this simplified adaption technique does not
possess the limitations inherent in certain surface search procedures that

encounter multiple minima.

limitations are placed on the nature of the performance criteria that
may be used with performance feedback adaptive systems by the requirement
that they either be capable of instantaneous evaluation or require only a
short time interval for their evaluation. Performance criteria that con-
tain an integration over an infinite interval can often be reasonably ap-
proximated by suitably truncating the interval of integration. Other ways

of circumventing this shortcoming should be investigated.

The stability properties of performance feedback adaptive systems 1s
a topic of fundamental importance. To consider this question, the inter-
action (coupling) between the adaptive loop and the primary loop must be
taken into account. In general, this yields a set of equations that are
nonlinear and nonstationary. The stability problem has received scant
attention, on a rigorous mathematical level, 1n the literature—a stability

analysis 1s undertaken in Ref. 25,
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V. LEARNING SYSTEMS

learning systems were first described and defined in the technical
literature in 1963.142 These systems were said to constitute a step be-
yvond adaptive systems because they make use of information acquired in
the course of past operation to improve performance in the future. The
distinguishing teature of learning systems would be a memory associated

with the controller to store this experience previously acquired.

[t is clear that the AS class of adaptive systems possesses this
feature of 1mproving future performance based on past experience. The
mechanism whereby this 1s achieved consists of progressively reducing
the uncertainty of initial conditions, plant parameters, parameters
characterizing statistical distributions, etc., by means of observation
followed by identification. The control signal is thereafter computed
on the basis of the most recent best estimate of these imperfectly known
parameters and consequently becomes more and more appropriate as param-
eter uncertainty 1s reduced. The memory retaining the information

acquired consists of the dynamics of the estimator.

It 15 also possible to design a learning system derived trom the PF
concept of adaption. As an example, the reader 1s referred to the dis-
cussion of Sec. 1V, where the ignition angle & is adjusted as a function
of air density © so as to minimize fuel consumption rate 7. If o were
continuously measured (which 1is not done in the example discussed in
Sec. 1V) and 1f a relation between the optimum setting ¢* and & were
automatically 1dentified, the resulting system would indeed improve 1its
pertormance with time. This situation is analyzed in Ref. 2, and the
equations giving performance as a function of time are derived. Taking
the point of view, justified in Sec. IV, that the fuel consumption rate
7 1s a state variable and 1s erroneously called pertformance, then the
learning process consists of identifying (by means of a parameter per-
turbation instrument) the unknown functional relation between ¢* and p.

In other words, the mechanism from which the performance improvement

results 1s 1dentical to the analysis-synthesis mechanism discussed before,
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As was the case with adaptive systems, the learning systems de-
scribed in the literature lack the mathematical framework which aids the
designer in understanding the tundamental relations between variables in
a quantitative way. The mathematical framework which encompasses learn-
ing systems is again the theory of combined optimization. This becomes
clear from the operational definition of combined optimization, viz.,
“4o maximize performance based on all information available a priort and
acquired as a result of observations.” Systems designed in accordance
with the theory of combined optimization thus not only ‘“learn,” but
learn as fast as 1s possible 1n the presence of uncertainty. This fea-
ture of optimal utilization of information 1s partially due to the dual
aspect of control, wherein one of the two functions of control consists
of speeding up the process of acquiring information. This dual aspect
appears to have been completely overlooked 1n the literature on learning

systems.
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VI MEASUREMENT ADAPTIVE SYSTEMS

A.  Background

The adaptive systems commonly discussed in the literature counteract
both initial uncertainty about the plant and envirommental changes by
altering the control signals supplied to the plant. In this section, a
different class of adaptive systems characterized by controller action

upon the measurement subsystem 1s discussed.

The general measurement adaptive system 1s shown 1n Fig. 10. The
only diftference from the block diagram of the combined optimization system

M

is the control signal u” supplied by the controller to the measurement

subsystem.

The practical inportance of this concept becomes evident from the

following examples.

Example 1: The measurement vector z 1s transmitted to the controller
by means of a timeshared limited bandwidth communication channel: t.e.,
increased accuracy at the controller 1nput of one component of the measure-
ment vector 1s traded against decreased accuracy of the remaining components.
It 1s desired Lo find the optimum channel allocation among the components

of the measurement vector under steady-state as well as transient conditions.

Example 2: The instrumentation system is energy-limited. The accuracy
of the measurements depends on the power supplied to the instruments; this
expenditure of power in turn decreases the amount of energy left for later
measurements. The best allocation of energy among the measurement instru-

ments under transient and steady-state conditions 1s sought.

Example 3: The radar of an antimissile or antiaircraft defense system
can be made to track only one of several targets at a time. One seeks the
best radar allocation (including the best mode of operation) among the

various targets as the tactical situation develops.
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FIG. 10 MEASUREMENT ADAPTIVE SYSTEM
Example 4: The sonar set of a destroyer chasing a submarine collects

state information about the target, but at the same time alarms the target,
thus facilitating its escape. The best observation schedule, including
transmitting power and frequency, as the tactical situation develops is

desired.

Example 5: A manufacturing concern has the option of producing
several different kinds of goods which they expect to sell at certain
profits. To concentrate their production facilities upon those 1tems
bringing in the highest profits, they can buy a market survey, the oper-
ational equivalent of an instrumentation system. In this case it 1s
necessary to know the desirability and extent of the market survey which
will maximize the net profit, i.e., gross profit minus cost of market

survey.
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It is seen from these examples that the parameters characterizing
the measurement system can be controlled in a manner so as to maximize
or minimize a given performance criterion. In certain cases, notably
examples 1, 2, and 3, action upon the measurement system decreases the
uncertainty about one state variable, or of the state vector at one time
interval at the expense of the remaining variables or intervals. [Inother
cases, notably examples 4 and 5, the acquisition of information in addi-
tion entails a direct cost which must be included 1u the performance

function.

The problem under discussion is representative of an important class
ot optimal decision processes not covered by the classical theory of
optimal control. In the remainder, a mathematical formulation ot the
general problem will be provided and a solution derived from combined
optimization theory will be developed. Thereafter the computable and
practically important special case of a linear system with Gaussian
perturbations and quadratic performance will be treated in detail. It
will be seen that the elements of the covariance matrix of the state
enter into the optimization equation in exactly the way system state

vari1ables do.

B. General Problem Formulation

In the general case, the problem of measurement system adaptation

is tormulated as follows:
Given:

The Plant Equation, written in discrete time as

x = f(xk,ui,wk,k) (34)

The Observation Equation

z, = hi{x_ ,u¥ k) (35)

The Probability Distributions of the uncorrelated and white random
processes,

plxy) , plw,) , plv,) (36)
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The Performance Criterton (cost function)

N

J = FE 2 l(xk,uf,ur,k) , (37)
k=0

where the expectation is taken with respect to the random variable x,.

k
Find: The seguence of controls uf(Zk)E;UP(k = 0, ..., K) of the plant
and uf(Zk) e U¥ of the measurement system which minimizes J,
where
A
Zgs o eeey T, 0F Z, . (38)

For the general case of nonlinear equations (34) and (35), non-
Gaussian probability distributions (36), and the nonquadratic performance
criterion (37), the solution of the stated optimization problem is a
dynamic programming formalism similar to that of combined optimization
theory. The most convenient way to derive this formalism consists of ex-
tending Meier's solution of the combined optimization problem®. This may

be done simply by defining

foatia~]

u, = . (39)

Ll

There now exists a problem which differs from the combined optimiza-
tion problem only in that the control at time k enters in not only the
state equation at time k but the measurement equation at time k + 1. This
problem may be solved in exactly the same way as the combined optimization
problem by replacing p(z,, /x,,,) by p(zk+1/xk+l,uk) in the estimation

equattion.

C. Special Case

In the general case it 1s impossible to find the plant control and
measurement control separately. It the plant 1s linear, 1f the measure-
ment system is linear in the state and measurement noise (but not
necessarily in the measurement contrél), if the disturbances and measure-
ment noises are Gaussian, and if the performance is quadratic 1in the state
and plant control with an additive measurement control cost term, then not

only can the measurement control policy be determined separately from the
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plant. control policy, but the measurement control policy is open loop;

that s, the proper measurements may be determined a priort.

In the linear, Gaussian, quadratic case, the problemis formulated

as follows:
(riven:
The Plant Equuation

x = F

B X

N Gkui towy , (40)

§

where v 1s the “n’” component state vector.

The Measurement Subsystem*

z, = Hyx, v v, (41)
The Performance Criterion
N-1 T
_ T, P P M
J = E kgo Ekaxk + uy Ru, + lk(ukﬂ , (42)
with L (uf) = 0,
Gausstan Probability Density Functions
plxy) = ¢ exp[(xo - ;O)HQ:}(XO - ;0)] (43)
plu,) = ¢, exp[urﬁgllwa (44)
plv,) = ¢, exp[u[ﬁllvk] . (45)
(c,, ¢,y and ¢, are constants of no consequence here.)

Relation Between the Accuracy of the Measurement Systenm
and the Measurement Control

denotes the elements of the noise covariance

where the vector r,

matrix Hk.

*
The most general measurement equation linear in state and measurement is

Hkxk + Mkuh v
but af v, 1s Gausslan, so ls vh = Mkvk; hence, having Rk 8 function of uk is equivalent to having Mk a

function of uf.
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Relation Between the Observation Matrix ”k‘l and the
Measurement Control

ay,, = oluy, k), (47)

where the vector « denotes the elements of

R+ 1 R+ 17

Set of Instantancous Constraints on the Measurement System

utoe vy (48)

‘dl]d ’()I‘ a

Set of Vartational Constraints of the Form

N-1
> m(uf,k) = M . (49)
k=10

Find: The contro!l sequences uP - {ug, R uf} and U¥ = {ug, R u23

which minimize the cost J 1n Eg. (36), that 1s

1-1
ginu E {kéo (xlohxk + uZRkuk) + lk(uf)} (50)
[ 2 T

It the uf were specitied, then the problem would reduce to the

linear combined optimization problem, whose complete solution 1s presented

in Appendix A. The optimal control 1in that case 1s
ul = -Kox, . (51)
where Qgﬁk is the coditional mean of x, given Z,. The optimal performance
1s
- A N_l
J = xOPox0 + tr[POQ_l} + kgo Aﬁk (52)
) A A ¥
TAVORE Lr[Pk+1Qk + Pz+1pkyh] + L (uy) , (53)
A

where P, and P} are cost matrices and P,,, 1s the covariance of the
estimate of x, given Z,; equations for their evaluation along with K,

are given in Appendix A.
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The optimum control law K, and the cost matrices P, and P: are
independent of R, and H, and thus are independent of choice of uf.
Therefore, the plant contro! policy can be determined separately from

the measurement control policy. Since the choice of uf affects only

P,,, and U, in Eq. (53), the computation of ur 1s equivalent to the
following deterministic control problem: minimize
N- ] p
* L T M
J kgo[pkpk s wh) (54)

subject to the constraint

Pyey = Flp, u") (55)

’
/

where bk is the vector of components of Pk/k’ p, is the vector of
components of Py and Eq. (55) is derived from Eqs. (46), (47), (A-14)
and (A-15). Since P: can be solved a priorit, the above deterministic
control problem can also be solved a priort. The results of this
paragraph are also derived directly using dynamic programming 1in

Appendix C.

It may also be noted that this same procedure for finding uf may be
followed even it the optimum control law K, is not used. In this case,
it is only necessary to replace the optimal P, by the suboptimal P,
corresponding to the control law actually used. Reference 29 contains
equations for computing P, for suboptimal control. [f suboptimal estima-
tion is used as well, then Eg. (53) becomes slightly more complicated but

the same principles apply.

D. Example

In order to demonstrate the principles developed in this section, an

illustrative one-dimensional example will be presented.
Given:

Plant

=
it
~
ko
=
e
+
N

E[wk] = 0, cov lw,] = q, - (56)



Measurement Subsystem

2,0 x, ¢+ uk(uf_l)
E[vk] = 0, cov [vk] = ﬁk . (57)

A
i

The constraint on the measurement control uf is that M measurements must
k,

be made. [f a measurement 1s made at time then r, = »; 1f no measure-
. . A
ment 1s made at time k, then r, = .
Performance Criterion
N
= 2 2 -
J E kgo (g x% + rus) . (58)

As shown in Sec. VI-C, the determination of the optimal measurement

policy reduces to the tollowing nonlinear, deterministic control problem:

Minimize

- E A
Jroo= % (q, + fipk+l T PPy ’ (59)
subject to the constraint
}_] B (fz/\ R M )'l N r”\_l (60)
k+1/k+1 kP i/ 9 T e+l '

A . : X ) ) ,
where Ph/p 18 the covariance of the error in the estimate of x,, and P,

satisfies the Riccati equation

P, 9y t fipk+1 - fipi+1(Pk+l st
0 < k <N (61)
Py = 9y

Consider this example with the following parameter values:

fo = 0.9
y = 1
g, = 1.
r., = 1.0
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M o= 2
2’—1'-1 = 2.0 '
for the two cases:
(1) Zero disturbance noise, ak =0
(2) Nonzero disturbance noise, ak = 2.

The results for cases (1) and (2) are summarized in Figs. 11 and 12
respectively. The solid lines represent transitions from k ~ | to k when
a measurement 1s made at time k; the dashed lines represent transitions
from & - 1| to k when no measurement is made at time k. The values below
the nodes at time k correspond to Bk/k; the values above the nodes at

time k correspond to the partial cost I,, where

A k_ 5 A
Ik - 1%0 (ql+f‘;pl+l_pl)pz/1 * (62)

[t should be noted that certain transitions in the decision trees of

Figs. Il and 12 are not admissible, since two (M = 2) measurements must
be made. The minimum value for J* ot Eq. (59) is shown circled in the
figures, Hence, the optimum measurement policy is:
Case (1)
Vlake measurements at k = 0, |
Case (2)
Make measurements at k = 0, 2

E. Conclusions

In this section of the report apparently novel concept of measure-
ment adaptive systems was formulated and solved optimally in the general
case as well as in the special case of linear systems, Gaussian pertur-
bations, and quadratic cost of state and plant control. In this special
case, the resulting problem reduces to one of classical optimal control,
where the elements of the state covariance matrix act as state variables
and where the Matrix Riccati eguation plays the role of the equations of

motion.
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The concept of measurement adaptive systems appears to encompass

the following two novel elements:

(1) There exists many practical situations where the
performance of the system is strongly dependent
on the way the measurement resources are used.
In some situations, an actual cost 1s assoclated
with the way the measurement system 1s used.

(2) From a more theoretical point of view, 1t 1s im-
portant to note that information, as described
for instance by the elements of the state covari-
ance matrix, 1s a system state. A better under-
standing of information is required to find
approximate solutions to the combined optimization
problem, which constitutes the general mathematical
framework ftor adaptive system research.
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VI APPLICATIONS FOR ADAPTIVE SYSTEMS

Since 1956, numerous articles concerned with adaptive systems have
appeared in the control literature and yet there have been very few suc-
cessful applications, the X-15 autopilot being perhaps the only satis-
factory embodiment at this time. Tt is consequently appropriate to ask

the following two questions:

(1) Does adaption have value?

(2) In the affirmative, what is the research and develop-
ment policy required to generate successful applications?

Recalling the mwain objective of adaptive system design, namely im-
proved performance in the presence of uncertainty, it is reasonable to
assume that adaptation has considerable practical and economical value

in those situations where the following two conditions hold:

(1) The amount of uncertainty must be such that the per-
formance J_, a precisely defined mathematical ex-
pression, of the adaptive system is much superior
to the performance J_of a conventional (nonadaptive)
design. In this context, it will be convenient to
define the value of adaptation V as

(2) The value of adaptation must be commensurate with the
added cost of developing and implementing the adaptive
system. For example, if the value turns out to be
50 percent, if the economic return corresponding to
this value is $1000, and if the added development,
implementation and maintenance costs are $100,000,
then the adaptive approach is clearly not justified,
even though it is highly impressive on purely tech-
1cal grounds.

As a partial answer to the second question, it may therefore be
stated that adaptive applications are most likely to succeed when there
1s much uncertainty and when the economic returns are commensurate with

the added complexity of the adaptive approach. This would seem to favor
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large-system applications over small subsystems of the position-control
servo variety, which nonetheless have attracted a very high proportion

of the adaptive research efforts. As typical examples of large aerospace
system applications, the tracking program and the adaptive reliability
developed in the course of this project are quoted. For these same reasons,
complex adaptive approaches toward earth-space laser communications systems

appear justifiable.

In addition to economic justification, it will be necessary to pro-
vide the designer adaptive systems with improved analytical procedures to
reduce the amount of testing and adjustment required today. The tradi-
tional way of designing conventional servo-control systems has been to
implement a reasonable controller structure and to adjust the gain param-
eters by means of simple tests related to overshoot, noise immunity, etc.
Since in most cases, these systems are linear, a single test suffices to
ensure that the system is stable. In the case of adaptive systems, which
are always nonlinear, such simple design procedures can no longer be used;
instead, it is necessary to ensure beforehand by analytical procedures
whether or not the systems perform adequately in every admissible region
of the state space. In the course of the present study, some of the de-
sired analytical design procedures were worked out in a preliminary
fashion. In order to enhance the effectiveness of these procedures 1in
aiding the design engineer, they will need to be further developed, tested

by suitable computer experiments, and published in the technical literature.
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VIII CONCLUSIONS AND RECOMMENDAT1ONS

In what follows, the main conclusions of the SRI study on adaptive
systems are given, and recommendations on the nature of further research

required to advance the state of the art are listed.

A. Conclusions

The adaptive concepts described to date in the technical literature
have, in general, not been subjected to the set of rules that are becoming
standard for the design of complex systems; that 1s, definition of objec-
tives and constraints, establishment of mathematical models, search for
optimization mathematics, and finally development of laws of control which
meet the applicable real-time requirements. The systems described in the
literature either lack these elements altogether (mostly the PF systems)
or do not provide laws of control applicable to real-time conditions
(mostly AS systems). These shortcomings, it is felt, explain to a large
extent the lack of satisfactory adaptive systems developed beyond the ex-

perimental stage.

[t was found in the course of the study that the theory of combined
optimization provides a general mathematical framework for the analysis
and synthesis of adaptive systems. The various adaptive concepts described
in the literature can be viewed as computable approximations to the solution
of the combined optimization problem. It is possible, in all cases, to
describe the adaptive system by a set of differential or difference equa-
tions, to state the objective pursued in quantitative terms, and to deter-
mine rigorously {as opposed to experimentally) the set of design parameters

which optimize the particular adaptive concept under consideration.

The ultimate aim pursued by the designers” of adaptive systems was

found to be twofold, vis:

(1} Performance enhancement of the system in the presence
of uncertainty, mostly about plant or environmental
parameters.,

(2) Simplification of the measurement and/or controller sub-
systems or elimination of the need for accurate mathe-
matical models.
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If the first of these two motivations applies, the system is usually
quite complex in comparison with the customary position-control feedback
systems, and a conscientious and time-consuming eftort to develop optimal
laws of control,which usually require a digital computer for implementa-
tion,1s often justified. I{ the second of these motivations applies, the
system may be as simple as a customary position control system; the
effort required to develop a workable adaptive concept can consequently
only be justified on a mass production basis, and the implementation

should not require a digital computer.

in the course of the study, the apparently novel concept of measure-
ment adaptive systems was developed. This concept not only has distinct
practical 1mportance 1n certain large-scale systems but appears to lead

to a class of optimization problems of considerable theoretical potential.

The work performed in the course of this study not only encompasses
adaptive systems, but also the systems sometimes referred to as “learning.”
The difference between AS systems and learning systems is insignificant,

and the mathematical technigques are identical in both cases.

B. Recommendations

[In this section, the authors endeavor to recommend which research
efforts should be encouraged to further the state-of-the-art of adaptive
systems and to bring about worthwhile and successful applications. These

recommendations are discussed in the tollowing puragraphs.

Of the two main aims pursued by the designers of adaptive systems
and discussed in Sec. [-D-3, the first appears to need a much more sub-
stantlal research effort than the second, because fairly efficient ana-
lytical procedures applicable to relatively simple adaptive systems now

exlist.

Since combined optimization 1s the mathematical framework for anal-
yzing the various adaptive concepts, and since the solution to the
general combined optimization problem 1s not computable, it is recom-
mended that the study of computable approximations and the search for
tractable special cases should be encouraged. The following possibilities

are suggested:

(1) Linearization and Gaussianization, which, it justifiable,
leads to Kalman-Bucy estimator-controller structures.
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Justification of this approximation has not been
established in the high-noise case, and a quantita-
tive assessment of the errors has not been made,

(2) Postulation of a structure of the form
Uy = Bz ooe Y/ B p)

and subsequent optimization of the parameters p, as
opposed to direct solution of the dynamic program-
ming formalism of combined optimization.

(3) Utilization and adaptation of gradient procedures,
particularly by interpreting the i1nformation con-
tained in the lagrangian variables and functions.

Many of the analytical design procedures worked out in the course
of the study have not been checked by means of computer programs for
lack of time. These checks, together with comparative analyses, will be
required to demonstrate the validity of these procedures. Specifically,

such programs should be established for

(1) The linearized approach to AS system design, as
described 1n Appendix B

(2) The analytical design procedure for PF systems,
described 1n Sec. IV

{3) The design procedures ftor measurement adaptive sys-
tems, as described in Sec. VI.

In parallel with these general investigations, it will be necessary
to select worthwhile applications for the various adaptive concepts.
Recalling the two motivations for the design of adaptive systems, 1t
would appear that the best examples can be found in the realm of rela-
tively complex systems where performance improvements rather than
decreased manufacturing costs are at a premium. The optimum tracking

10, t6'7

program>’ and the adaptive approach toward reliability enhancemen are

representative examples of worthwhile applications.

The optimum tracking program, of which a first version was estab-
lished in the course of this study, needs to be further developed 1n the

following directions:

(1) Modification of the control part of the present pro-
gram to ensure faster and more reliable convergence
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(3)

(4)

Check of the present program to determine 1ts limitations,
and removal of these limitations to increase the value
of the program as an evaluation tool.

Simplification of the program to make 1t suitable for the
real-time control of antenna tracking systems

Adaptation of the program to related tracking tasks,

notably ground-based and onboard laser tracking systems
and star trackers.
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APPENDIX A

COMBINED OPTIMIZATION THEORY

In this appendix a brief summary of combined optimization theory 1s

presented; for details the reader is referred to Refs. 29 and 30.

1. Statement of the Combined Optimization Problem

Given

(1) A plant, described by

Xpey = f(xk,uk,wk,k) , (A-1)
where

X, 1s the state vector

u, 1s the control or input vector

3

w, 1s the disturbance vector, assumed to be white.
(2) A measurement system, described by

S TC U0 S (A-2)

where

z, 1s the measurement vector

v, 1s the measurement noise vector, assumed to be white.

(3) The probability distributions

(a) plxy)
(b) plu) i 0, ..., N
(c) p(v,) it = 0, ..., N . (A-3)
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(4) The performance 1index

N S
J = E{Z l(xl,ui,i)} (A-4)
i=0

(5) The admissibility constraint

Find the admissible controller that minimizes J, where

(1) A controller is defined as any algorithm that at time
k generates u, as a function of the present and all
past measurements (zk,...,zo).

(2) An admissible controller is defined as any controller
which, when used in the closed-loop system shown in
Fig. 3 yvields admissible u, .

2. Solution of the Combined Optimization Problem

It can be shown that the optimum controller can be broken into tLwo

parts: an estimator, which calculates the condition probability density
O / ; . - , .

y = p(xk,Zk,Lk_l) where Zk Zgyeewy 2,, etc., and a control law
u, = uk(Pk). The estimator is governed by the equation

p(zh+1/xk+1) f p(xk+1/xk’uk)p(xh’/’Zk‘Uk—l)dxk
ol

P(xy1/241,U)

x

/ P(zk+1/"h+l),fp(xhﬂ/"h'“A)P("p/zrUh-l)d"kdxnl
k

k+]
k>0
plxy/ZU.) = —PZalxo)pxy) (A-6)
J‘p(zo/xo)p(xo)dxo
*o
and the control law is found by solution of
I*(ﬁ;,k) = T}n (L(ka”k'k) + ‘fil {I*Pﬂ(ﬁl'“k'lk+l)'k * 1]})
k
k<N
I'(E,N) = min Ly, uy, M) (A-7)

N
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Wh(‘[‘(‘

. N
', k) = min B2 LU a0/, ,
Uy -ty 1 Tk
L(Vl,ul,L) < E 1l(xl,ul,L)/[lJ
E ll(rl,ul,i)/Zl,[flkl] . (A-8)

U'se has been made of the fact that Eq. (A-6) takes the form
"~ - AR .
Mo FolPsug,zyey)

3. Statement of the Linear Combined Optimization Problem

A very important special case of the combined optimization problem
is the linear combined optimization problem, which occurs when the follow-

ing conditions are met:

{1} The plant and measurement systems are linear, i.e.,

+ Gk“k *ow, (A-9a)

(b) z, = Hox, + v, . (A-9b)
(2) The performance index 1s quadratic, tL.e.,

l(xl,ui,i) = xClel + uTR u (A-10)

(3) The probability distributions are Gaussian, i.e.,

(a) plxy) = ¢, exp [(x0 - ;;)T(é_l)‘l(xo - ;6)] (A-11)
A

(b) p(w,) = ¢, exp Q7 'w,) (A-12)
A

(c) ply,) = ¢y exp (UZR‘lvk) (A-13)

where ¢,, ¢,, ¢, are constants of no consequence here and where:

A
Q_, = a priori covariance of x,

A
Q, = covariance of the disturbance at time k
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Rk covariance of the measurement noise at time K

a prionri mean o ‘ .\'“

L. The Solution to the Linear Combined Optimization Problem

The solution of the linear combined optimization problem s illustrated
in Fig. A-1 and 1s as follows: The estimation eguations mayv be broken 1mnto

two sets:

ukl

'__|> Gy DELAY
|
}'PLANT

DELAY

— > S

‘ CONTR LER
L ot _

TA - 5878- 28

FIG. A-1 LINEAR COMBINED OPTIMIZATION
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(1) The prediction equations

A A
ety Foxy, v Gy
A A T A
Povvsw = FuPp, W Fy v 0Q, . and (A-14)
(2) The regression equations
A, A A LS
Nporesr = Zpwrse P KpaCapny - g x0)
A A A A
Poviviver 7 Poorn ~ Kool Py ’ (A-15)
where
) A
X0, E(xl/Z],U )
I A A
Pl/] = El(x, - x , )&, - xl/J)T/Zj,U ]
Z} = (zys e, z])
U} = (uO, Ce, u})
I A T A T A -
Koo = P i (o Prsy s+ Ryyy)
Control 1s given by
= K, 2 (A-16)
Uy k¥ k7 k :
where
. T -1
K, = (G, P,,,G, + R,) GZPk+1Fk
- T T -1, AT
Py = Q FZPk+1Fk - FyPy G (GPy Gy + R Gy Py Fy
Py = Qy
Optimum performance 1s
_ _ A N-1
Join 7 xoPoxe * tr (PQ_) ¢ kéo LB,
A A
BBy = e [Py Q¢ PELP ]
Pr., = Q.+ FP,,F, - P, . (A-17)
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5. The Extended Kalman Filter

In this section, approximate solution of the estimation equation (A-6)

is considered. The development is based upon application of perturbation

theory and linear estimation theory.

Consider the state and measurement equations?®

o1 = fOou k) 4wy

z = h(x,, k) + v, (A-18)

. . A .
Prediction is investigated first. Linearization of f about x, ., yields

I A
Voay s R u k) ¢ f (R e B (xR ) ey . (A-19)

where the gradient g (x) of a vector function g(x) is the matrix defined by

A ag(i)

(l)(}) = (A'QO)
x4

with the superscripts denoting components.

Letting
~ B A ~ _ A
oy = xeqy - f(x 0 u,0k) and  x, = x, - X, :
Equation (A-18) takes the form of (A-9a); therefore
A A L
Xpsi/n = fz(x‘/k,uk,k)xk/h = 0
A
A
;; A k }; T, A A
prie = TG ou RIP L f(x pu k) Q

*
These equations need not be linear in v, and v, but for simplicity only this case is treated; the

extension is trivial.
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or

A . A A A
Povrsn = fx(xk/k’uk’k)Pk/kfI(Qk/k'uk‘k) *Q, : (A-21)

These are the approximate prediction equations.

. . . A
Now consider regression. I[f Eq. (A-18) is linearized about xk+”*,

then
A A A
Zeser = ROk v D) R Gk 2 D - Xy 0) f oy
(A-22)
Letting
- & A
Zper T Zyey T hlr ke )
Equation (A-24) takes the form of Eq. (A-9b); hence
}k+1fk+l = Xarg K o L - h(x, kv 1)]
Pk+1/h+1 = Pk+1yk - Kk+1hxpk+1/k
I A T I T -1
L Pk/k_lhz(thk+l/khx * Ryuy) ' (A-23)

where the argument of hx(§k+1/k' k + 1) has been suppressed for simplicity.

These are the approximate regression equations.
The extended Kalman Filter is illustrated in Fig. 5

Can the use of the extended Kalman filter, which is heuristically
valid, be justified theoretically? One approach is to solve Eq. (A-6)
approximately and compare the results with the extended Kalman filter.

Bucy40

has done this for the continuous time analog of Eq. (A-6), which
ts a generalized Fokker-Planck equation. His results contain terms that
are not present in the continuous version of the extended Kalman filter
Which may be obtained by limiting arguments from the results of the pre-
vious paragraph), Similar results have also been obtained for the discrete
time case in unpublished work by the author. Thus, to Justify the use of

the extended Kalman filter for identification, one must show that these

additional terms are negligible in this case.

11



The procedure just mentioned gives as an estimate of the present state
an approximation of the most probable present state. Alternatively, one
may seek as an estimate the most recent state on the most probable tra-
jectory. In the linear case these two estimates are equal, but in general
they will not be the same. The problem of finding the most likely trajectory
may be converted to a nonlinear control problem and treated by dynamic
programming.® Unpublished work by Luenberger and a paper by Detchmendy
and Sridhar® indicate that an approximate solution to this problem is
similar to the linearized Kalman filter, but again with extra terms. How-
ever, these terms disappear in the identification problem presented here;
hence, to justify the linearized Kalman filter on this basis requires
justification of the use of the most probable trajectory rather than the

most probable present state for estimation.
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APPENDIX B

APPLICATION OF COMBINED OPTIMIZATION
THEORY TO ADAPTIVE CONTROL

In this appendix {(which contains the material of Ref. 6), the appli-
cation of combined optimization theory to the approximate solution of the
linear adaptive control problem by developing passive and analysis-

synthesis adaptive control systems 1s considered.

I. The Linear Adaptive Controi Problem

Given

(1) The input/output relation*

Ye T QaYe-1 * o @ Yeo, * bpuyoyp e oo bu

+ d d + ... ¢

k-1 P Cor%e-g nk@h-n (B-1)

where

¥, 1s the scalar output
u, is the scalar control input
d‘ is the scalar disturbance input, white in time, and

a. bik, c,, are parameters; c, , known.

(2) The parameter equations:

Prsr = Fﬁﬁk T
_ o T
@, T 8%, *t an P,
- T
by = b?k LA (B-2)

* This is the most general input/output relation for an nth-order system with one control input, one dis-
turbance input, and one output. For multiple-input systems, more terms appear on the right-hand side;
for multiple outputs, there will be more than one equation.
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where

¢, 1s the parameter state vector
7, 1s the parameter disturbance noise, white in time

Ff 1s a known matrix

;x b, are known vectors

a® , b° are the nominal values of a and b ,.
Tk ik 1k Lk

(3) The measurement equation

where

z, 1s the scalar measurement

v, is the scalar measurement noise, white in time.

(4) The statistics

~ N A "o
Ypcarove) "Ny yonyons Yo -1 Poy-n)

d, ~ N(0,q,)
v, ~ N(O,T,)
A
b ~N (b, PR )
un ~ N(0,QP)

where

A
A . . . . A
x ~ N(x,P) means x is normxlly distributed with mean x

and covariance P.

(5) The performance index*

N

Joe E ek erud)

where

q, and r, are given scalars.

*

(B-3)

(B-4)

(B-5)

More general quadratic cost functions involving up to the last n = 1 outputs at a given time may be

treated with little increese in complexity.
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Find: The controller which determines u, as a function of

k
N . . . .
Zk - (:0,...,zk) tor each k i1n such a manner as to minimize E(J).
Note that the assumption that the ¢ , are known implies that the
statistics of random effects on the system are known. Only uncertainty

in the structure of the system is considered in this appendix.

2. Formulation of the Linear Adaptive Control Problem

as a Combined Optimization Problem

To show that the linear adaptive control problem is a combined

optimization problem, it is sufficient to make the following definitions:

- - -
Y 0
Y 0
u: 0
A 0
x, = vy < | (B-6)
* .
dk
0
dk
[ % ] [ e ]
where
-1
* o . .
a, = : for any scalar time function o,
ak"l

From Eqs. (B-1), (B-2), and (B-6) the tollowing state equation may
be generated:

. -
Dy, + Ay,

£

ko1 = flxu,,w, k) = Dak LAY (B-7)

*
de + Adk

Fég, + T

14

More general quadratic cost functions involving up to the last n - ] outputs at a given time may be
treated with little increase in complexity.
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where

0 1
D = n-1Xn-1 matrix - -
0
0
A = n~-1x1 matrix |-
1
dlld
T T *
_ ~Thye o * o [ o
e = Pl * w1 ¥ Qs ? bysyuy * b, Uy
HE = Ay, + a + Bou, + b u
x Ay e T L ke 1Y [ S-SR L 4
with
- 7 - - -
2kt Qe+
T2 . o .
Ay, = . 4
T Q
[ Z2k+1 ] [ Tok+1
_— - _— -
—nk+1l nk+l
T A o . .
Bh - . Qh - .
T o
_§2k+ld _b2k+1_
an"’l
Ly °© .
[ €oa41
The measurement equation 1s simply
= = T =
z, hpy(x,) + v, Hix, Yt Ve

18
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T
24

*

k

+

d

k

(B-8)

(B-9)



where

-
Al
O jlcjo |~ ]o

4
[ —

H, = (B-10)

Two comments are in order at this point:

(1) The dynamic behavior of the system is described by the
dynamic state vector

|= 1=
- k.

£ & (B-11)

4
Ll 2

=
 *

of dimension 3n - 2. This vector lias almost three times
the minimum number of n dimensions that are needed to
describe the behavior of an nth-order dynamic system.
The additional dimensions are necessary to facilitate
1dentification.

(2) The unknown parameters of the system are handled by
augmenting the dynamic state vector with the vector by -

3. LUse of the Extended Kalman Filter for Identification

Figure 6 is a block diagram of the extended Kalman filter used in the

adaptive control system.

The equations given above describing the linear adaptive control
problem have the form of Eq. (A-1) with the simplification that h(x,,v,)
1s linear. Hence by calculating f, and substituting directly into
Egs. (A-21) and (A-23), the equations that simultaneously estimate the

dynamic state of the plant and identify its parameters can be derived.
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From Eq. (B-7)
Q T, o o Y T I'FST
_‘lk + T’kAk a1k+1 + caglki»l bk + qu —g—k
0
0 : D 0 0
0
0
0 : 0 D 0
0
0
0 : 0 0 F;
| 0

np

Fbe

(B-12)

Note that F€ is the transition matrix for the dynamic state, assuming the

present estimate of system parameters are exact.

If the covariance matrices are partitioned in the same manner as f

above, then

k+1/h

80

[pD D

Pk+1/k Pkfl/k
D

LP?+1/k |P€+1/k

(B-13)



and if

0

o
bTesr * Dabias,

a
Gf = = distribution matrix for dynamic state
A if ¢, is known,
0
L 0 g (B-14)

then by substitution into Eqs. (A-21) and (A-23), the following results

are obtained:

Prediction Equations

AD - DAD D
Yo = Foxd, + Gy,
A A
Tt = FiPu
pD opp ppT L 5, f
Pivie ¢ FPYWFe + Q + Q,
A A T A T
D . D gD b
Pf+1/& - Ffpf/kpk * Ffpk/kF£¢
A A T
- B-1
PLoi,0 = FPPE,FE , (B-15)
where
Ne DépéDd gbT ohog pooT Dépd  pDdT .
Q - Fk¢PT/ka * FbPk/ka¢ + FY7PE LRy (B-16)
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[~ 0 T
0 0 0
0
0 0l190 0| o7
A .
Q = 4
0
0 0 0
0
L 0 A 0 AT
D Lo . . A
F, = ‘transition matrix for plant 1f ¢, = ¢k/k
D ) ) ) A
G, = distribution matrix for plant 1f ¢, = ¢k/k
P?f] = covariance of x? given ZJ
Regression Equations
kD S CRD, (e - b )
R+1/k+1 k+1/k k+1 TR+ Ye+1/%
A A A
. ’
& - (2 Y
Preren Deersn t Ko e Yir1/k)
2 A Il T
D - D _ b DDy
Povizesr = Prersa Kk+18k+1/k
A A I T
bD - bD _ Apy
Pici/van a1/ K?+1£k+l/k
A A A 7
b = - g? Doy -
Peei/in Pf*l/k KevitPita/n (B-17)

where
Yy i i v
pY}; 1s the variance of y, given Z]
. . D .
pi;j is the covariance between x’| and y, given Zj

By - -
p%y; s the covariance between ¢ and y, given Zj

b = phy By y / -1
Ky 1 Bh+1/k(pk+l/k £ Ther)
Ad) ¢ A A 1
- y Yy -
K%y Ekﬂ/k(Pkﬂ/k F T ey)
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1. Passive Adaptive Control Systems

One obvious example of a situation in which linearized equations
are exact 1s where the parameters are known exactly; hence one can expect
that the linearized Kalman filter will work well when the amount of un-

certainty about the system is small.

The final term of the regression Eq. (B-17) for updating the esti-
mate of the parameter state contains pf+1/k as a multiplicative factor.
When the parameters are well known, this covariance is small and the esti-
mate of the parameters is essentially the a priori estimate; hence, it is
reasonable to consider not updating the parameter estimates. If this 1is
done (i.e., identification is not performed and estimation of the dynamic
state 1s based upon the a priori estimate of the structure), then the

estimator still obeys the equations given above, except that

‘?’Hl/nl = $k+l/k
A
¢ D - )
Ph+1/k+1 - ﬁf+1/h
¢ - ¢
ﬁk+l/k+l - ﬁk+l/k : (B-18)

This observation, which is true any time the linearized Kalman filter can
be justified, will prove of great use in the analysis of passive adaptive

systems.

Suppose that, in Fig. 6 the gain K, is set equal to zero. In this
case no 1dentification 1s performed and the a priori estimate of the
system parameters 1s used in designing the estimator and determining the
control law. Such a system can be called a passive adaptive system—
passive because no active adaption procedures are used and adaptive be-

cause normal feedback provides some insensitivity to parameter variations.

In Sec. ITI-C it was pointed out that the effect of parameter un-

Certaintyfon the plant was equivalent to a disturbance noise with co-

. A . ,
variance Q). For ry ° 0, i.e., no measurement noilise.
A péps  pboT
* - -
Q; FoPeF (B-19)
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From Eqs. (B-8) and (B-12), F?® has the form

where

Therefore,

Foé

M

o - oo

0>

»

o
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where

T oA A A
A pTyTpey oD oTyrps T b
Yy
T xy MPM xy ¢ Zag MPlnu + u,n, Fynguy
A T * T *
S pTap b T » *
= ox, Q) xy * 2xy s, ou, tour,u, : (B-23)

Note that since Pf can be calculated a priori (since no identification
* * .

* .
takes placc),Qf , if and r, can be determined a priore.

Even though Q: is a function of the dynamic state and control, 1t
is of such a form that linear theory can still be applied. The develop-

ment begins with the assumption that

. T
I, k) = 22 PxD + b, . (B-24)

Substitution of Eqs. (B-16), (B-22), and (B-24) into control Eq. (A-7) yields

I, (F, k)

T
: 2 2 D )

min E{lya, * uiry * 20 Praifier * b401) /2,
k

. A T
= min [yjq, *+ ufr, + (Fpxy,, + Gyuy) Pul(Ff’A‘f/b + Gyuy)
u
k
T * T . * .
* Pl @ x, 2y sy ¢t
(p DAY S ] ]
ver P (FyP WP v Q)+ by , (B-25)

where p, is f P di 2
Prs component o r+] corresponding to y,.

Note that this recursion equation is the same as would be obtained
if the a priori estimate of the plant were exact but the performance

index were

T ' T '
(xe QE xe + 2xf gf u, + r;u2) , (B-26)
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where

- 0 q
0 0 0
0
0 014g,]0 - 010 0
, 0 .
QF = 0 : 0 0 * P{+10f
0
0
0 0 0
L 0 -
' .y *
£ 7 Pr+rSe
T TRt Pleirs

The primed quantities cannot be calculated before the minimization; how-
[ 4 :

ever, p7,, will be available in time to compute Qf , gf , and Lf when

they are needed.

The minimization of Eq. (B-25) can be carried out by completion of
squares; Ref. 8 contains the details. The results, which are similar

to those of Appendix A, are

u, = -K)ZP (B-27)
where
T -1 T ‘T
b ' D ) ) ) D
Ky = (ry + G PG (Gy Py Fy v s, )
and
p. - ob »Tp D pT cP D'y KD
v = Qp + FU P Fy - (F PGy o+ sy DK
op b7 L, ¢ (B-28)
b, = tr [P, FOP, ,F2 + Q)] *+ b, . -
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Performance is given by Eq.

(A-17) of Appendix A, with

87

[ A
Yo/-1

A
Yo/=1

(B-29)
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APPENDIX C

MEASUREMENT ADAPTIVE SYSTEMS

This appendix presents the proof that the plant control and measure-
ment control can be optimized separately for the special case given in

Sec. VI-C,
Substitution of Eq. (42) into Eq. (A-8) yields

. T I
LOPuy k) = &7 0%, «uf Rl + 1, ")« er [P,,,0,] . (C-1)

With the assumption that

P -~ 1F\T N " _
I (‘k+1)k+1) h xk*l,/k*lph+1xk+l/k*l MR I ’ (C-2)

use of Fgs. (A-14), (A-15), and (40) implies

-p )]

kt] e+l

X r ‘ A
E (g ke DIRY = Fr, +Gu) P Fury y « Gub) er P (P

Tk+l
L3 (PR T (C-3)
Fquations (C-1) and (C-3) are derived with the aid of the identity, proved
1in Bef. 29:

ElxT0x)] = x"0x + tr (PQ) , (C-4)

where

ol
I
RS
—
—
=
1
® |
_
—
»
t
"
-
3
S
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Use of Egqs. (C-1) and (C-2) in Eq. (A-7) results 1n

T
* (70 - . AT A P P
(5 k) = A (e Qe + Uy Royy,

u

kYR

A A T ’
+ lk(uf) +tr [Pk/th] + Fx,,, * Gkuf) P (Fuxy,p + byuy)

A A
"
cer Py Pryyy = P+ Il byt

. AT g A pTp P
N ’mP“ b‘k/kokxk/k +u, Ry

u

k

A P T A
r (Fx,,, G,uy) Ph+l(Fkxk/k + Gkuh)] * by
A A "
+ min {lk(uf) +tr [Pk+l(Pk+1/k - Pk+1/k+1) + Pk/ka] + If+1}
5
[N - XD O Py
N Qe totr Py Ry . (C-5)

The minimization over uf can be performed by completion of squares (see
Ref. 29 for details) to yield Eq. (A-16) for P,. It is also seen from
Eqs. (C-2) and (C-5) that 1f

A
b, tr (P,,,Q,) + b,y
b = 0 , (C-6)

then from Eqs. (A-14) and (A-17},

A A A
- min [1,(u¥) + er (PLo Py * PaPysy = PoaPowy i) ¢ INay ]
Yk
W M
If = tr [Py,,Qy] . (C-7)
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Yquations (C-7) are the dynamic programming equations for the de-

terministic control problem:
Mintmuize

A A I A
2 I WD wer PPy PPy PrnPra ) tT Py, iRy

N-l A A

T Eo (L )+ er (PR Py )T vt (PP o) (C-8)

A
subject to the recursion equation for P, obtained by combining

Fqs. (A-14) and (A-15). The summation i? the right half of Eq. (C-8)
is identical with J* of Sec. VI. Since P;,, and Pj are independent of
u? for : = 0, ..., N-1, it follows that the deterministic control

problem just stated is equivalent to the one given in Sec. VI.
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